Ejemplos de motores son, los de gasolina y los diesel, que convierten la expansión del gas al calentarlo en par de rotación; la máquina de vapor, que transforma la expansión del vapor caliente en par de rotación; el motor eléctrico, que convierte la electricidad en fuerzas de giro por medio de la acción mutua de los campos magnéticos.
Un generador, por otra parte, transforma energía mecánica de rotación en energía eléctrica y se le puede llamar una máquina generatriz de fem. Las dos formas básicas son, el generador de corriente continua y el generador de corriente alterna, este último más correctamente llamado alternador.
Todos los generadores necesitan una máquina motriz (motor) de algún tipo para producir la fuerza de rotación, por medio de la cual un conductor puede cortar las líneas de fuerza magnéticas y producir una fem. La máquina más simple de los motores y generadores, es el alternador.
MOTORES DE CORRIENTE ALTERNA
En algunos casos, tales como barcos, donde la fuente principal de energía es de c-c o donde se desea un gran margen de variación de velocidad, pueden emplearse motores de c-c. Sin embargo, 1a mayoría de los motores modernos trabajan con fuentes de c-a.
A pesar de que hay una gran variedad de motores de c-a, solamente se discutirán aquí tres tipos básicos: el universal, el síncrono y el de jaula de ardilla.
Motores universales.
El motor de c.c. serie, tal como se ha explicado, gira cuando se aplica c-c o c-a de baja frecuencia. Tal motor, llamado universal, se utiliza en ventiladores, sopladores, batidoras, taladradoras eléctricas transportables y otras aplicaciones donde se requiere gran velocidad con cargas débiles o pequeña velocidad con un par muy potente.
Una dificultad de los motores universales, en lo que a radio se refiere, son las chispas del colector y las interferencias de radio que ello lleva consigo o ruido. Esto se puede reducir por medio de los condensadores de paso, de 0,001 μF a 0,01 μF, conectados de las escobillas a la carcasa del motor y conectando ιsta a masa.
Motores síncronos. :Se puede utilizar un alternador como motor en determinadas circunstancias. Si se excita el campo con c-c y se alimenta por los anillos colectores a la bobina del rotor con c-a, la máquina no arrancará. El campo alrededor de la bobina del rotor es alterno en polaridad magnética pero durante un semiperiodo del ciclo completo, intentará moverse en una dirección y durante el siguiente semiperiodo en la dirección opuesta. Si la carga llega a ser demasiado grande, el motor va disminuyendo velocidad, pierde su sincronismo y se para. Los motores síncronos de este tipo requieren todos una excitación de c-c para el campo (o rotor), así como una excitación de c-a para el rotor (o campo
El resultado es que la máquina permanece parada. La máquina solamente se calentará y posiblemente se quemará.
El rotor de un alternador de dos polos debe hacer una vuelta completa para producir un ciclo de c-a. Debe girar 60 veces por segundo, ó 3.600 revoluciones por minuto (rpm), para producir una c-a de 60 Hz. Si se puede girar a 3.600 rpm tal alternador por medio de algún aparato mecánico, como por ejemplo, un motor de c-c, y luego se excita el inducido con una c-a de 60 Hz, continuará girando como un motor síncrono.
Su velocidad de sincronismo es 3.600 rpm. Si funciona con una c-a de 50 Hz, su velocidad de sincronismo será de 3.000 rpm. Mientras la carga no sea demasiado pesada, un motor síncrono gira a su velocidad de sincronismo y solo a esta velocidad.